Quantum phase transition in an antiferromagnetic spinor Bose-Einstein condensate.
نویسندگان
چکیده
We have experimentally observed the dynamics of an antiferromagnetic sodium Bose-Einstein condensate quenched through a quantum phase transition. Using an off-resonant microwave field coupling the F = 1 and F = 2 atomic hyperfine levels, we rapidly switched the quadratic energy shift q from positive to negative values. At q = 0, the system undergoes a transition from a polar to antiferromagnetic phase. We measured the dynamical evolution of the population in the F = 1, mF = 0 state in the vicinity of this transition point and observed a mixed state of all 3 hyperfine components for q < 0. We also observed the coarsening dynamics of the instability for q < 0, as it nucleated small domains that grew to the axial size of the cloud.
منابع مشابه
Solitons for nearly integrable bright spinor Bose-Einstein condensate
Using the explicit forms of eigenstates for linearized operator related to a matrix version of Nonlinear Schrödinger equation, soliton perturbation theory is developed for the $F=1$ bright spinor Bose-Einstein condensates. A small disturbance of the integrability condition can be considered as a small correction to the integrable equation. By choosing appropriate perturbation, the soli...
متن کاملSpinor bosonic atoms in optical lattices: symmetry breaking and fractionalization.
We study superfluid and Mott insulator phases of cold spin-1 Bose atoms with antiferromagnetic interactions in an optical lattice, including a usual polar condensate phase, a condensate of singlet pairs, a crystal spin nematic phase, and a spin singlet crystal phase. We suggest a possibility of exotic fractionalized phases of spinor Bose-Einstein condensates and discuss them in the language of ...
متن کاملClassifying vortices in S = 3 Bose-Einstein condensates
Motivated by the recent realization of a Cr Bose-Einstein condensate, we consider the phase diagram of a general spin-three condensate as a function of its scattering lengths. We classify each phase according to its reciprocal spinor, using a method developed in a previous work. We show that such a classification can be naturally extended to describe the vortices for a spinor condensate by usin...
متن کاملAntiferromagnetic spatial ordering in a quenched one-dimensional spinor gas.
We have experimentally observed the emergence of spontaneous antiferromagnetic spatial order in a sodium spinor Bose-Einstein condensate that was quenched through a magnetic phase transition. For negative values of the quadratic Zeeman shift, a gas initially prepared in the F=1, m(F)=0 state collapsed into a dynamically evolving superposition of all three spin projections, m(F)=0, ±1. The quenc...
متن کاملGeneration of massive entanglement through an adiabatic quantum phase transition in a spinor condensate.
We propose a method to generate massive entanglement in a spinor Bose-Einstein condensate from an initial product state through an adiabatic sweep of the magnetic field across a quantum phase transition induced by competition between the spin-dependent collision interaction and the quadratic Zeeman effect. The generated many-body entanglement is characterized by the experimentally measurable en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 107 19 شماره
صفحات -
تاریخ انتشار 2011